Superdiffusion transition for a noisy harmonic chain subject to a magnetic field

Cane Gaëtan LJAD, UCA

Nice 24 February 2022

Microscopic scale

System composed of many particles and described by Newton's Laws

Microscopic scale

System composed of many particles and described by Newton's Laws

Mesoscopic scale

System described by a kinetic equation on the density f

$$\partial_t f + v \nabla_x f = Q[f, f]$$

Kinetic

limits

Microscopic scale

System composed of many particles and described by Newton's Laws

Kinetic limits.

Mesoscopic scale

System described by a kinetic equation on the density f

$$\partial_t f + v \nabla_x f = Q[f, f]$$

Macroscopic scale

System described by some macroscopic equations

- Euler's equations
- Diffusion equation

Hydrodynamic limits
Two-steps

Microscopic scale

System composed of many particles and described by Newton's Laws

Mesoscopic scale

System described by a kinetic equation on the density f

$$\partial_t f + v \nabla_x f = Q[f, f]$$

Macroscopic scale

Kinetic

limits

System described by some macroscopic equations

- Euler's equations
- Diffusion equation

Hydrodynamic
limits

Two-steps

Hydrodynamic limits
One-step

Fourier's law and diffusion equation 1822: Fourier's experimental law

Fourier's law and diffusion equation

1822: Fourier's experimental law

$$J(t, u) = -\kappa(T) \nabla T(t, u).$$

This leads to

$$\partial_t T(t,u) = \nabla_u \left(\kappa(T) \nabla_u T(t,u) \right)$$
. Diffusion equation

We consider a system of N interacting particles labelled by x with mass m_x .

We consider a system of N interacting particles labelled by x with mass m_x .

$$x \in \{1,...,N\}$$

$$\frac{d}{dt}q(t,x) = v(t,x)$$

$$m_x \frac{d}{dt}v(t,x) = q(t,x+1) + q(t,x-1) - 2q(t,x)$$

We consider a system of N interacting particles labelled by x with mass m_x .

$$x \in \{1, ..., N\} \qquad \frac{d}{dt}q(t, x) = v(t, x)$$

$$m_x \frac{d}{dt}v(t, x) = q(t, x + 1) + q(t, x - 1) - 2q(t, x)$$

$$+\alpha \left(W'\left(q(t, x + 1) - q(t, x)\right) - W'\left(q(t, x) - q(t, x - 1)\right)\right).$$

We consider a system of N interacting particles labelled by x with mass m_x .

$$x \in \{1, ..., N\} \qquad \frac{d}{dt}q(t, x) = v(t, x)$$

$$m_x \frac{d}{dt}v(t, x) = q(t, x + 1) + q(t, x - 1) - 2q(t, x)$$

$$+\alpha \left(W'\left(q(t, x + 1) - q(t, x)\right) - W'\left(q(t, x) - q(t, x - 1)\right)\right).$$

Energy of the system

$$E(t) = \frac{1}{2} \sum_{x=1}^{N} m_x |v(t,x)|^2 + \frac{1}{2} \sum_{x=1}^{N} (q(t,x) - q(t,x-1))^2 + \alpha W(q(t,x) - q(t,x-1)).$$

We consider a system of N interacting particles labelled by x with mass m_x .

$$x \in \{1, ..., N\} \qquad \frac{d}{dt}q(t, x) = v(t, x)$$

$$m_x \frac{d}{dt}v(t, x) = q(t, x + 1) + q(t, x - 1) - 2q(t, x)$$

$$+\alpha \left(W'\left(q(t, x + 1) - q(t, x)\right) - W'\left(q(t, x) - q(t, x - 1)\right)\right).$$

Energy of the system

$$E(t) = \frac{1}{2} \sum_{x=1}^{N} m_x |v(t,x)|^2 + \frac{1}{2} \sum_{x=1}^{N} (q(t,x) - q(t,x-1))^2 + \alpha W(q(t,x) - q(t,x-1)).$$

In one dimensional systems heat conductivity seems to be anomalous for $\alpha \neq 0$.

$$x \in \mathbb{Z}$$
 $\frac{d}{dt}v_i(t,x) = q_i(t,x+1) + q_i(t,x-1) - 2q_i(t,x)$

$$x \in \mathbb{Z} \quad \frac{d}{dt}v_i(t,x) = q_i(t,x+1) + q_i(t,x-1) - 2q_i(t,x) \quad +\varepsilon \text{ noise}(t,x)$$

$$x \in \mathbb{Z}$$
 $\frac{d}{dt}v_i(t,x) = q_i(t,x+1) + q_i(t,x-1) - 2q_i(t,x) + \varepsilon \operatorname{noise}(t,x)$

The noise preserves the energy and the momentum.

$$E(t) = \sum_{x \in \mathbb{Z}} e(t, x). \qquad P(t) = \left(\sum_{x \in \mathbb{Z}} v_1(t, x), \sum_{x \in \mathbb{Z}} v_2(t, x)\right).$$

$$x \in \mathbb{Z}$$
 $\frac{d}{dt}v_i(t,x) = q_i(t,x+1) + q_i(t,x-1) - 2q_i(t,x) + \varepsilon \operatorname{noise}(t,x)$

The noise preserves the energy and the momentum.

$$E(t) = \sum_{x \in \mathbb{Z}} e(t, x). \qquad P(t) = \left(\sum_{x \in \mathbb{Z}} v_1(t, x), \sum_{x \in \mathbb{Z}} v_2(t, x)\right).$$

- BBO [PRL'06] proved that $\kappa(T)$ diverges.
- BOS [ARMA'10] study this system when ε goes to zero.

$$x \in \mathbb{Z} \quad \frac{d}{dt}v_i(t,x) = q_i(t,x+1) + q_i(t,x-1) - 2q_i(t,x) \quad +\varepsilon \text{ noise}(t,x) \quad +B(\delta_{i,1}v_2(t,x) - \delta_{i,2}v_1(t,x))$$

The noise preserves the energy and the momentum.

$$E(t) = \sum_{x \in \mathbb{Z}} e(t, x). \qquad P(t) = \left(\sum_{x \in \mathbb{Z}} v_1(t, x), \sum_{x \in \mathbb{Z}} v_2(t, x)\right).$$

- BBO [PRL'06] proved that $\kappa(T)$ diverges.
- BOS [ARMA'10] study this system when ε goes to zero.
- SSS [CMP' 19] add a magnetic field of intensity B to the deterministic system.

Let μ^{ε} be the initial distribution of the system. $\varepsilon \to 0$

Natural assumption:

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_0(u) du \,. \qquad \text{Macroscopic scale}$$

Let μ^{ε} be the initial distribution of the system. $\varepsilon \to 0$

Natural assumption:

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_0(u) du \,. \qquad \text{Macroscopic scale}$$

Can we have a macroscopic equation for the energy density in a time scale $t\varepsilon^{-1}$?

Let μ^{ε} be the initial distribution of the system. $\varepsilon \to 0$

Natural assumption:

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_0(u) du \,. \qquad \text{Macroscopic scale}$$

Can we have a macroscopic equation for the energy density in a time scale $t\varepsilon^{-1}$?

We define $\mathcal{W}^{\varepsilon}:[0,T]\to (S\times S)'$ with $S=\{\text{smooth functions on }\mathbb{R}\times\mathbb{T}\}.$

Let μ^{ε} be the initial distribution of the system. $\varepsilon \to 0$

Natural assumption:

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}}[e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_0(u) du \,. \qquad \text{Macroscopic scale}$$

Can we have a macroscopic equation for the energy density in a time scale $t\varepsilon^{-1}$?

We define $\mathcal{W}^{\varepsilon}:[0,T]\to (S\times S)'$ with $S=\{\text{smooth functions on }\mathbb{R}\times\mathbb{T}\}.$

Let $J = (J_1, J_1)$ be a pair of functions independent of k then

$$\langle \mathcal{W}^{\varepsilon}(t), J \rangle = \varepsilon \sum_{x \in \mathbb{Z}} \mathbb{E}_{\mu^{\varepsilon}} \left[e \left(t \varepsilon^{-1}, x \right) \right] J_{1}(\varepsilon x) + \mathcal{O}_{J}(\varepsilon) .$$

To understand the behavior of the energy, we have to understand the one of W^{ε} .

Historical results of BJKO

BOS [ARMA'10] and SSS [CMP'19] proved that $\mathcal{W}^{\varepsilon}$ converges to f where

$$\partial_t f(t,u,k,i) - rac{\mathsf{V}_B(k)}{2\pi} \partial_u f(t,u,k,i) = \mathscr{L}_B[f](t,u,k,i)$$
. Mesoscopic scale

Historical results of BJKO

BOS [ARMA'10] and SSS [CMP'19] proved that $\mathcal{W}^{\varepsilon}$ converges to f where

$$\partial_t f(t,u,k,i) - \frac{\mathsf{V}_B(k)}{2\pi} \partial_u f(t,u,k,i) = \mathscr{L}_B[f](t,u,k,i)$$
. Mesoscopic scale

Here

$$\mathcal{L}_{B}f(t,u,k,i) = \sum_{j=1}^{2} \int_{\mathbb{T}} \theta_{i,B}^{2}(k)R(k,k')\theta_{j,B}^{2}(k') \left(f(t,u,k',j) - f(t,u,k,i) \right) dk'.$$

$$\mathbf{v}_{B}(k) = \frac{\sin(\pi k)\cos(\pi k)}{\sqrt{\sin^{2}(\pi k) + \frac{B^{2}}{4}}} \qquad \text{and} \qquad \theta_{1/2,B}^{2} = \frac{1}{2} \pm \frac{B}{4\sqrt{\sin^{2}(\pi k) + \frac{B^{2}}{4}}}.$$

$$X \sim \mathcal{N}(m, \sigma^2) \text{ iff } \mathbb{P}(X \in A) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_A \exp\left(-\frac{|x-m|^2}{2\sigma^2}\right) dx.$$

$$X \sim \mathcal{N}(m, \sigma^2) \text{ iff } \mathbb{P}(X \in A) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_A \exp\left(-\frac{|x-m|^2}{2\sigma^2}\right) dx.$$

Let $(X_n)_{n\in\mathbb{N}}$ a sequence of i.i.d random variables such that $\mathbb{P}(X_0=1)=\mathbb{P}(X_0=-1)=\frac{1}{2}$.

$$X \sim \mathcal{N}(m, \sigma^2) \text{ iff } \mathbb{P}(X \in A) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_A \exp\left(-\frac{|x-m|^2}{2\sigma^2}\right) dx.$$

Let $(X_n)_{n\in\mathbb{N}}$ a sequence of i.i.d random variables such that $\mathbb{P}(X_0=1)=\mathbb{P}(X_0=-1)=\frac{1}{2}$.

For
$$N \in \mathbb{N}^*$$
 we define

$$S_N = \sum_{n=0}^{N^2} X_n$$
 et $\mathbb{E}\left[S_N
ight] = 0$ et $\mathbb{E}\left[S_N^2
ight] = N^2$. Microscopic scale

$$X \sim \mathcal{N}(m, \sigma^2) \text{ iff } \mathbb{P}(X \in A) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_A \exp\left(-\frac{|x-m|^2}{2\sigma^2}\right) dx.$$

Let $(X_n)_{n\in\mathbb{N}}$ a sequence of **i.i.d** random variables such that $\mathbb{P}(X_0=1)=\mathbb{P}(X_0=-1)=\frac{1}{2}$.

For $N \in \mathbb{N}^*$ we define

$$S_N = \sum_{n=0}^{N^2} X_n$$
 et $\mathbb{E}\left[S_N
ight] = 0$ et $\mathbb{E}\left[S_N^2
ight] = N^2$. Microscopic scale

$$X \sim \mathcal{N}(m, \sigma^2) \text{ iff } \mathbb{P}(X \in A) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_A \exp\left(-\frac{|x-m|^2}{2\sigma^2}\right) dx.$$

Let $(X_n)_{n\in\mathbb{N}}$ a sequence of i.i.d random variables such that $\mathbb{P}(X_0=1)=\mathbb{P}(X_0=-1)=\frac{1}{2}$.

For $N \in \mathbb{N}^*$ we define

$$S_N = \sum_{n=0}^{N^2} X_n$$
 et $\mathbb{E}\left[S_N
ight] = 0$ et $\mathbb{E}\left[S_N^2
ight] = N^2$. Microscopic scale

Brownian motion and Heat equation We can show that $N^{-1}S_N$ converges to a $\mathcal{N}(0,1)$.

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

We can show that $N^{-1}S_N$ converges to a $\mathcal{N}(0,1)$. Let u in \mathbb{R} and $t \geq 0$ we define

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

• $\mathscr{B}_{u}^{N}(\cdot) \to \mathscr{B}_{u}(\cdot)$ where $\mathscr{B}_{u}(\cdot)$ is a Brownian motion on \mathbb{R} starting from u.

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

- $\mathscr{B}_{u}^{N}(\cdot) \to \mathscr{B}_{u}(\cdot)$ where $\mathscr{B}_{u}(\cdot)$ is a Brownian motion on \mathbb{R} starting from u.
- $\mathcal{B}_u(t)$ has density f_u where

$$f_{u}(t,x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|x-u|^2}{2t}\right) \longrightarrow \mathcal{B}_{u}(t) \sim \mathcal{N}(u,t).$$

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

- $\mathscr{B}_{u}^{N}(\cdot) \to \mathscr{B}_{u}(\cdot)$ where $\mathscr{B}_{u}(\cdot)$ is a Brownian motion on \mathbb{R} starting from u.
- $\mathcal{B}_{u}(t)$ has density f_{u} where

•
$$\mathcal{B}_u(t)$$
 has density f_u where
$$f_u(t,x)=\frac{1}{\sqrt{2\pi t}}\exp\left(-\frac{|x-u|^2}{2t}\right) \longrightarrow \mathcal{B}_u(t) \sim \mathcal{N}(u,t) \ .$$
 Let ρ_0 be a smooth function.

$$\rho(t, u) = \mathbb{E}\left[\rho_0\left(\mathcal{B}_u(t)\right)\right]$$

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

- $\mathscr{B}_{u}^{N}(\cdot) \to \mathscr{B}_{u}(\cdot)$ where $\mathscr{B}_{u}(\cdot)$ is a Brownian motion on \mathbb{R} starting from u.
- $\mathcal{B}_{u}(t)$ has density f_{u} where

•
$$\mathscr{B}_u(t)$$
 has density f_u where
$$f_u(t,x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|x-u|^2}{2t}\right) \longrightarrow \mathscr{B}_u(t) \sim \mathscr{N}(u,t) \,.$$
 Let ρ_0 be a smooth function.

$$\rho(t, u) = \mathbb{E}\left[\rho_0\left(\mathcal{B}_u(t)\right)\right] = \int_{\mathbb{R}} \rho_0(x) f_u(t, x) dx$$

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

- $\mathscr{B}_{u}^{N}(\cdot) \to \mathscr{B}_{u}(\cdot)$ where $\mathscr{B}_{u}(\cdot)$ is a Brownian motion on \mathbb{R} starting from u.
- $\mathcal{B}_{u}(t)$ has density f_{u} where

•
$$\mathscr{B}_u(t)$$
 has density f_u where
$$f_u(t,x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|x-u|^2}{2t}\right) \longrightarrow \mathscr{B}_u(t) \sim \mathscr{N}(u,t) \,.$$
 Let ρ_0 be a smooth function.

$$\rho(t,u) = \mathbb{E}\left[\rho_0\left(\mathcal{B}_u(t)\right)\right] = \int_{\mathbb{R}} \rho_0(x) f_u(t,x) dx = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} \rho_0(x) \exp\left(-\frac{|x-u|^2}{2t}\right) dx.$$

Brownian motion and Heat equation

We can show that $N^{-1}S_N$ converges to a $\mathcal{N}(0,1)$. Let u in \mathbb{R} and $t \geq 0$ we define

$$\mathcal{B}_{u}^{N}(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{2}t \rfloor} X_{n}.$$

- $\mathscr{B}_{u}^{N}(\cdot) \to \mathscr{B}_{u}(\cdot)$ where $\mathscr{B}_{u}(\cdot)$ is a Brownian motion on \mathbb{R} starting from u.
- $\mathcal{B}_{u}(t)$ has density f_{u} where

•
$$\mathscr{B}_u(t)$$
 has density f_u where
$$f_u(t,x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|x-u|^2}{2t}\right) \longrightarrow \mathscr{B}_u(t) \sim \mathscr{N}(u,t) \,.$$
 Let ρ_0 be a smooth function.

$$\rho(t,u) = \mathbb{E}\left[\rho_0\left(\mathcal{B}_u(t)\right)\right] = \int_{\mathbb{R}} \rho_0(x) f_u(t,x) dx = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} \rho_0(x) \exp\left(-\frac{|x-u|^2}{2t}\right) dx.$$

 ρ is solution of

$$\partial_t \rho(t, u) = \frac{1}{2} \Delta[\rho](t, u).$$

Brownian motion induces diffusion.

Levy process

Lévy process

Lévy process

Let $\alpha \in (1,2)$ and σ a measure on \mathbb{R}^* such that $d\sigma(r) = |r|^{-\alpha-1} dr$.

Then

$$\int_{\mathbb{R}^*} \min(1, r^2) d\sigma(r) < + \infty \text{ and } \int_{\mathbb{R}^*} r^2 d\sigma(r) = + \infty.$$

 $Y_u(\cdot)$ is a Lévy process starting from u with measure σ iff

$$\mathbb{E}\left[\exp\left(\mathrm{i}\theta Y_u(t)\right)\right] = \exp\left(-|\theta|^{\alpha} + \mathrm{i}\theta u\right).$$

Levy process

Let $\alpha \in (1,2)$ and σ a measure on \mathbb{R}^* such that $d\sigma(r) = |r|^{-\alpha-1} dr$.

Then

$$\int_{\mathbb{R}^*} \min(1, r^2) d\sigma(r) < + \infty \text{ and } \int_{\mathbb{R}^*} r^2 d\sigma(r) = + \infty.$$

 $Y_u(\cdot)$ is a Lévy process starting from u with measure σ iff

$$\mathbb{E}\left[\exp\left(\mathrm{i}\theta Y_u(t)\right)\right] = \exp\left(-|\theta|^{\alpha} + \mathrm{i}\theta u\right).$$

We define

$$\rho(t,u) = \mathbb{E}\left[\rho_0\left(Y_u(t)\right)\right] \qquad \qquad \rho(t,u) = \mathbb{E}\left[\rho_0\left(\mathcal{B}_u(t)\right)\right].$$

Then

$$\partial_t \rho(t, u) = -(-\Delta)^{\frac{\alpha}{2}} [\rho](t, u) \qquad \qquad \qquad \qquad \qquad \partial_t \rho(t, u) = \Delta[\rho](t, u).$$

Levy process induces fractionnal diffusion.

$$\begin{split} \partial_t f(t,u,k,i) - \frac{\mathsf{V}_B(k)}{2\pi} \partial_u f(t,u,k,i) &= \mathscr{L}_B[f](t,u,k,i) \,. \qquad \text{Mesoscopic scale} \\ \mathscr{L}_B f(t,u,k,i) &= \lambda_B(k,i) \sum_{j=1}^2 \int_{\mathbb{T}} P_B(k,i,dk',j) \left(f(t,u,k',j) - f(t,u,k,i) \right) \,. \end{split}$$

$$\begin{split} \partial_t f(t,u,k,i) - \frac{\mathsf{V}_B(k)}{2\pi} \partial_u f(t,u,k,i) &= \mathscr{L}_B[f](t,u,k,i) \,. \qquad \text{Mesoscopic scale} \\ \mathscr{L}_B f(t,u,k,i) &= \lambda_B(k,i) \sum_{i=1}^2 \int_{\mathbb{T}} P_B(k,i,dk',j) \left(f(t,u,k',j) - f(t,u,k,i) \right) \,. \end{split}$$

We define a jump process $(K(\cdot), I(\cdot))$

- (K(0), I(0)) = (k, i).
- The process waits a time $\lambda_B(k,i)$.
- The process goes from (k, i) to (k', j) with probability $P_B(k, i, dk', j)$.

$$\begin{split} \partial_t f(t,u,k,i) - \frac{\mathsf{V}_B(k)}{2\pi} \partial_u f(t,u,k,i) &= \mathscr{L}_B[f](t,u,k,i) \,. \qquad \text{Mesoscopic scale} \\ \mathscr{L}_B f(t,u,k,i) &= \lambda_B(k,i) \sum_{i=1}^2 \int_{\mathbb{T}} P_B(k,i,dk',j) \left(f(t,u,k',j) - f(t,u,k,i) \right) \,. \end{split}$$

We define a jump process $(K(\cdot), I(\cdot))$

- (K(0), I(0)) = (k, i).
- The process waits a time $\lambda_B(k,i)$.
- The process goes from (k, i) to (k', j) with probability $P_B(k, i, dk', j)$.

$$Z_u(t) = u + \frac{1}{2\pi} \int_0^t \mathbf{v}_B(K(s)) ds.$$

$$\begin{split} \partial_t f(t,u,k,i) - \frac{\mathsf{V}_B(k)}{2\pi} \partial_u f(t,u,k,i) &= \mathscr{L}_B[f](t,u,k,i) \,. \qquad \text{Mesoscopic scale} \\ \mathscr{L}_B f(t,u,k,i) &= \lambda_B(k,i) \sum_{i=1}^2 \int_{\mathbb{T}} P_B(k,i,dk',j) \left(f(t,u,k',j) - f(t,u,k,i) \right) \,. \end{split}$$

We define a jump process $(K(\cdot), I(\cdot))$

- (K(0), I(0)) = (k, i).
- The process waits a time $\lambda_B(k,i)$.
- The process goes from (k, i) to (k', j) with probability $P_B(k, i, dk', j)$.

$$Z_u(t) = u + \frac{1}{2\pi} \int_0^t \mathbf{v}_B(K(s)) ds.$$

Then

$$f_i(t, u, k) = \mathbb{E}_{(k,i)} \left[f^0 \left(Z_u(t), K(t), I(t) \right) \right] \longrightarrow f(t, u) = \mathbb{E} \left[f_0 \left(\mathcal{B}_u(t) \right) \right].$$

Let $\mathcal{N}(t)$ be the number of jumps until time t.

$$Z_{u}(t) = u + \frac{1}{2\pi} \int_{0}^{t} \mathbf{v}_{B} \left(K(s) \right) ds = u + \sum_{n=0}^{\mathcal{N}(t)} \lambda_{B} \left(K_{n}, I_{n} \right) \mathbf{v}_{B} \left(K_{n} \right). \qquad \Rightarrow \quad S_{N} = \sum_{n=0}^{N^{2}} X_{n}$$

Let $\mathcal{N}(t)$ be the number of jumps until time t.

$$Z_{u}(t) = u + \frac{1}{2\pi} \int_{0}^{t} \mathbf{v}_{B} \left(K(s) \right) ds = u + \sum_{n=0}^{\mathcal{N}(t)} \lambda_{B} \left(K_{n}, I_{n} \right) \mathbf{v}_{B} \left(K_{n} \right). \qquad S_{N} = \sum_{n=0}^{N^{2}} X_{n}$$

Let π_B the invariant measure of $(K_n, I_n)_{n \in \mathbb{N}}$.

Let $\mathcal{N}(t)$ be the number of jumps until time t.

$$Z_{u}(t) = u + \frac{1}{2\pi} \int_{0}^{t} \mathbf{v}_{B} \left(K(s) \right) ds = u + \sum_{n=0}^{\mathcal{N}(t)} \lambda_{B} \left(K_{n}, I_{n} \right) \mathbf{v}_{B} \left(K_{n} \right). \qquad S_{N} = \sum_{n=0}^{N^{2}} X_{n}$$

Let π_B the invariant measure of $(K_n, I_n)_{n \in \mathbb{N}}$. Let r > 0 then

$$\lim_{N \to \infty} N^{\alpha_B} \pi_B \left(\left\{ (k, i), \lambda_B(k, i) \mathbf{v}_B(k) > Nr \right\} \right) = \begin{cases} |r|^{-\frac{3}{2}} & \text{if } B = 0. \\ |r|^{-\frac{5}{3}} & \text{if } B \neq 0. \end{cases}$$

Let $\mathcal{N}(t)$ be the number of jumps until time t.

$$Z_{u}(t) = u + \frac{1}{2\pi} \int_{0}^{t} \mathbf{v}_{B}\left(K(s)\right) ds = u + \sum_{n=0}^{\mathcal{N}(t)} \lambda_{B}\left(K_{n}, I_{n}\right) \mathbf{v}_{B}\left(K_{n}\right). \qquad S_{N} = \sum_{n=0}^{N^{2}} X_{n}$$

Let π_B the invariant measure of $(K_n, I_n)_{n \in \mathbb{N}}$. Let r > 0 then

$$\lim_{N \to \infty} N^{\alpha_B} \pi_B \left(\left\{ (k, i), \lambda_B(k, i) \mathbf{v}_B(k) > Nr \right\} \right) = \begin{cases} |r|^{-\frac{3}{2}} & \text{if } B = 0. \\ |r|^{-\frac{5}{3}} & \text{if } B \neq 0. \end{cases}$$

With

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ et $\alpha_B = \frac{3}{2}$ if $B = 0$.

Let $\mathcal{N}(t)$ be the number of jumps until time t.

$$Z_{u}(t) = u + \frac{1}{2\pi} \int_{0}^{t} \mathbf{v}_{B}\left(K(s)\right) ds = u + \sum_{n=0}^{\mathcal{N}(t)} \lambda_{B}\left(K_{n}, I_{n}\right) \mathbf{v}_{B}\left(K_{n}\right). \qquad S_{N} = \sum_{n=0}^{N^{2}} X_{n}$$

Let π_B the invariant measure of $(K_n, I_n)_{n \in \mathbb{N}}$. Let r > 0 then

$$\lim_{N \to \infty} N^{\alpha_B} \pi_B \left(\left\{ (k, i), \lambda_B(k, i) \mathbf{v}_B(k) > Nr \right\} \right) = \begin{cases} |r|^{-\frac{3}{2}} & \text{if } B = 0. \\ |r|^{-\frac{5}{3}} & \text{if } B \neq 0. \end{cases}$$

With

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ et $\alpha_B = \frac{3}{2}$ if $B = 0$.

$$\frac{1}{N}Z_{Nu}(N^{\alpha_B}t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^{\alpha_B}t \rfloor} \lambda_B\left(K_n, I_n\right) \vee_B\left(K_n\right) \longrightarrow \mathcal{B}_u^N(t) = u + \frac{1}{N} \sum_{n=0}^{\lfloor N^2 t \rfloor} X_n.$$

Hydrodynamic limits

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ et $\alpha_B = \frac{3}{2}$ if $B = 0$.

Let $Y_u^B(\cdot)$ the Lévy process with Lévy measure $d\sigma(r) = |r|^{-\alpha_B-1} dr$.

Hydrodynamic limits

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ et $\alpha_B = \frac{3}{2}$ if $B = 0$.

Let $Y_u^B(\cdot)$ the Lévy process with Lévy measure $d\sigma(r) = |r|^{-\alpha_B-1} dr$.

Let ρ_B be the solution on $[0,T] \times \mathbb{R}$ of

$$\partial_t \rho_B(t,u) = - (-\Delta)^{rac{lpha_B}{2}} [
ho_B](t,u),$$
 Macroscopic scale $ho_B(0,u) =
ho^0(u)$.

Hydrodynamic limits

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ et $\alpha_B = \frac{3}{2}$ if $B = 0$.

Let $Y_u^B(\cdot)$ the Lévy process with Lévy measure $d\sigma(r) = |r|^{-\alpha_B-1} dr$.

Let ρ_B be the solution on $[0,T] \times \mathbb{R}$ of

$$\partial_t \rho_B(t,u) = - \, (-\Delta)^{rac{lpha_B}{2}} [
ho_B](t,u),$$
 Macroscopic scale $ho_B(0,u) =
ho^0(u)$.

JKO [AAP'09] and SSS [CMP'19] proved that

$$\lim_{N\to\infty} \sum_{i=1}^2 \int_{\mathbb{T}} \left| f(N^{\alpha_B}t, Nu, k, i) - \rho_B(t, u) \right|^2 dk = 0.$$

Initial assumption was

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_{0}(u) du.$$

The question was: Can we have an equation for the density of energy?

Initial assumption was

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_{0}(u) du.$$

The question was: Can we have an equation for the density of energy?

Answer:

$$\partial_t \mathcal{M}(t, u) = -(-\Delta)^{\frac{\alpha_B}{2}} [\mathcal{M}](t, u).$$

Macroscopic Scale

With

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ and $\alpha_B = \frac{3}{2}$ if $B = 0$.

Initial assumption was

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_{0}(u) du.$$

The question was: Can we have an equation for the density of energy?

Answer:

$$\partial_t \mathcal{M}(t, u) = -(-\Delta)^{\frac{\alpha_B}{2}} [\mathcal{M}](t, u).$$

Macroscopic Scale

With

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ and $\alpha_B = \frac{3}{2}$ if $B = 0$.

Limit in one step proved by JKO [CMP'15] for B=0.

Initial assumption was

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{x \in \mathbb{Z}} J(\varepsilon x) \mathbb{E}_{\mu^{\varepsilon}} [e(0,x)] = \int_{\mathbb{R}} J(u) \mathcal{W}_0(u) du.$$

The question was: Can we have an equation for the density of energy?

Answer:

$$\partial_t \mathcal{M}(t, u) = -(-\Delta)^{\frac{\alpha_B}{2}} [\mathcal{M}](t, u).$$

Macroscopic Scale

With

$$\alpha_B = \frac{5}{3}$$
 if $B \neq 0$ and $\alpha_B = \frac{3}{2}$ if $B = 0$.

Limit in one step proved by JKO [CMP'15] for B=0.

Cane [preprint]:

What happens if we replace B by $B_N = BN^{-\delta}$?

Let $B_N = BN^{-\delta}$ with $\delta > 0$. Now we work with the array (K_n^N, I_n^N) .

Let $B_N=BN^{-\delta}$ with $\delta>0$. Now we work with the array (K_n^N,I_n^N) . We define a measure u_δ on \mathbb{R}^* by

$$d\nu_{\delta}(r) = \begin{cases} |r|^{-\frac{3}{2}-1} dr \text{ if } \delta > \frac{1}{2} \\ h_{B}(r) dr \text{ if } \delta = \frac{1}{2} \\ |r|^{-\frac{5}{3}-1} dr \text{ if } \delta < \frac{1}{2} \end{cases}$$

Let $B_N = BN^{-\delta}$ with $\delta > 0$. Now we work with the array (K_n^N, I_n^N) . We define a measure ν_δ on \mathbb{R}^* by

$$d\nu_{\delta}(r) = \begin{cases} |r|^{-\frac{3}{2}-1} dr \text{ if } \delta > \frac{1}{2} \\ h_{B}(r) dr \text{ if } \delta = \frac{1}{2} \\ |r|^{-\frac{5}{3}-1} dr \text{ if } \delta < \frac{1}{2} \end{cases}$$

Let $Y_u^{\delta}(\cdot)$ the Lévy process with measure ν_{δ} .

Let $B_N = BN^{-\delta}$ with $\delta > 0$. Now we work with the array (K_n^N, I_n^N) . We define a measure ν_δ on \mathbb{R}^* by

$$d\nu_{\delta}(r) = \begin{cases} |r|^{-\frac{3}{2}-1} dr \text{ if } \delta > \frac{1}{2} \\ h_{B}(r) dr \text{ if } \delta = \frac{1}{2} \\ |r|^{-\frac{5}{3}-1} dr \text{ if } \delta < \frac{1}{2} \end{cases}$$

Let $Y_u^{\delta}(\cdot)$ the Lévy process with measure ν_{δ} . Let r>0 then:

$$\lim_{N\to\infty} N^{\alpha_{\delta}} \pi_{B_N} \left(\left\{ (k,i), \lambda_{B_N}(k,i) \mathbf{V}_{B_N}(k) > Nr \right\} \right) = \nu_{\delta}(r,+\infty).$$

With

$$\alpha_{\delta} = \frac{5-\delta}{3}$$
 if $\delta < \frac{1}{2}$ and $\alpha_{\delta} = \frac{3}{2}$ if $\delta \ge \frac{1}{2}$.

Theorem [Cane preprint]: $N^{-1}Z_{Nu}^N(N^{\alpha_{\delta}})$ converges to $Y_u^{\delta}(\cdot)$.

An interpolation P.D.E

$$\mathcal{D}_{\delta}[\phi](u) = \begin{cases} -(-\Delta)^{\frac{3}{4}}[\phi](u) & \text{if } \delta > \frac{1}{2} \\ \mathcal{D}_{B}[\phi] & \text{if } \delta = \frac{1}{2} \\ -(-\Delta)^{\frac{5}{6}}[\phi](u) & \text{if } \delta < \frac{1}{2} \end{cases}$$

An interpolation P.D.E

$$\mathcal{D}_{\delta}[\phi](u) = \begin{cases} -(-\Delta)^{\frac{3}{4}}[\phi](u) & \text{if } \delta > \frac{1}{2} \\ \mathcal{D}_{B}[\phi] & \text{if } \delta = \frac{1}{2} \\ -(-\Delta)^{\frac{5}{6}}[\phi](u) & \text{if } \delta < \frac{1}{2} \end{cases}$$

Let ρ_{δ} be the solution on $[0,T] \times \mathbb{R}$ of

$$\partial_t \rho_{\delta}(t, u) = \mathcal{D}_{\delta}[\rho_{\delta}](t, u),$$
$$\rho_{\delta}(0, u) = \rho^0(u).$$

Theorem [Cane, preprint]:

$$\lim_{N\to\infty} \sum_{i=1}^{2} \int_{\mathbb{T}} \left| f^{N} \left(N^{\alpha_{\delta}t}, Nu, k, i \right) - \rho_{\delta}(t, u) \right|^{2} dk = 0.$$

Work in progress (with Guelmame): Study the transition in one step.

THANK YOU FOR YOUR ATTENTION