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TL TR
J(t, u)

1822 : Fourier’s experimental law

J(t, u) = − κ(T)∇T(t, u) .
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∂tT(t, u) = ∇u(κ(T)∇uT(t, u)) . Diffusion equation

TL > TR
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ℒB f(t, u, k, i) =
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∑
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θ2

i,B(k)R(k, k′￼)θ2
j,B(k′￼) ( f(t, u, k′￼, j) − f(t, u, k, i))dk′￼.

vB(k) =
sin(πk)cos(πk)

sin2(πk) + B2

4

and θ2
1/2,B =

1
2

± B

4 sin2(πk) + B2

4

.
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Then  
Let  and  a measure on  such that .α ∈ (1,2) σ ℝ* dσ(r) = |r |−α−1 dr

 and  ∫ℝ*
min(1,r2)dσ(r) < + ∞ ∫ℝ*

r2dσ(r) = + ∞ .

∂tρ(t, u) = − (−Δ)
α
2[ρ](t, u)

ρ(t, u) = 𝔼 [ρ0 (Yu(t))]
We define

Then  

ρ(t, u) = 𝔼 [ρ0 (ℬu(t))] .

∂tρ(t, u) = Δ[ρ](t, u) .

 Levy process  induces fractionnal diffusion.



/1811

A jump process
∂t f(t, u, k, i) −

vB(k)
2π

∂u f(t, u, k, i) = ℒB[ f ](t, u, k, i) . Mesoscopic scale

ℒB f(t, u, k, i) = λB(k, i)
2

∑
j=1

∫𝕋
PB(k, i, dk′￼, j) ( f(t, u, k′￼, j) − f(t, u, k, i)) .



/1811

A jump process
∂t f(t, u, k, i) −

vB(k)
2π

∂u f(t, u, k, i) = ℒB[ f ](t, u, k, i) . Mesoscopic scale

ℒB f(t, u, k, i) = λB(k, i)
2

∑
j=1

∫𝕋
PB(k, i, dk′￼, j) ( f(t, u, k′￼, j) − f(t, u, k, i)) .

• 

• The process waits a time 

• The process goes from  to  with probability 

(K(0), I(0)) = (k, i) .

λB(k, i) .
(k, i) (k′￼, j) PB(k, i, dk′￼, j) .

We define a jump process  (K( ⋅ ), I( ⋅ ))



/1811

A jump process

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds .

∂t f(t, u, k, i) −
vB(k)
2π

∂u f(t, u, k, i) = ℒB[ f ](t, u, k, i) . Mesoscopic scale

ℒB f(t, u, k, i) = λB(k, i)
2

∑
j=1

∫𝕋
PB(k, i, dk′￼, j) ( f(t, u, k′￼, j) − f(t, u, k, i)) .

• 

• The process waits a time 

• The process goes from  to  with probability 

(K(0), I(0)) = (k, i) .

λB(k, i) .
(k, i) (k′￼, j) PB(k, i, dk′￼, j) .

We define a jump process  (K( ⋅ ), I( ⋅ ))



/1811

A jump process

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds .

Then 
fi(t, u, k) = 𝔼(k,i) [f 0 (Zu(t), K(t), I(t))] f(t, u) = 𝔼 [f0 (ℬu(t))] .

∂t f(t, u, k, i) −
vB(k)
2π

∂u f(t, u, k, i) = ℒB[ f ](t, u, k, i) . Mesoscopic scale

ℒB f(t, u, k, i) = λB(k, i)
2

∑
j=1

∫𝕋
PB(k, i, dk′￼, j) ( f(t, u, k′￼, j) − f(t, u, k, i)) .

• 

• The process waits a time 

• The process goes from  to  with probability 

(K(0), I(0)) = (k, i) .

λB(k, i) .
(k, i) (k′￼, j) PB(k, i, dk′￼, j) .

We define a jump process  (K( ⋅ ), I( ⋅ ))



Study of a Random Walk 

/1812

Let  be the number of jumps until time  .𝒩(t) t

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds = u +

𝒩(t)

∑
n=0

λB (Kn, In) vB (Kn) . SN =
N2

∑
n=0

Xn



Study of a Random Walk 

/1812

Let  be the number of jumps until time  .𝒩(t) t

Let  the invariant measure of πB (Kn, In)n∈ℕ
.

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds = u +

𝒩(t)

∑
n=0

λB (Kn, In) vB (Kn) . SN =
N2

∑
n=0

Xn



Study of a Random Walk 

/1812

Let  be the number of jumps until time  .𝒩(t) t

Let  the invariant measure of πB (Kn, In)n∈ℕ
. Let  then r > 0

lim
N→∞

NαBπB ({(k, i), λB(k, i)vB(k) > Nr}) =
|r |− 3

2 if B = 0.

|r |− 5
3 if B ≠ 0.{

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds = u +

𝒩(t)

∑
n=0

λB (Kn, In) vB (Kn) . SN =
N2

∑
n=0

Xn



Study of a Random Walk 

/1812

Let  be the number of jumps until time  .𝒩(t) t

Let  the invariant measure of πB (Kn, In)n∈ℕ
.

With
 if  et  if .αB =

5
3

B ≠ 0 αB =
3
2

B = 0

Let  then r > 0

lim
N→∞

NαBπB ({(k, i), λB(k, i)vB(k) > Nr}) =
|r |− 3

2 if B = 0.

|r |− 5
3 if B ≠ 0.{

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds = u +

𝒩(t)

∑
n=0

λB (Kn, In) vB (Kn) . SN =
N2

∑
n=0

Xn



Study of a Random Walk 

/1812

Let  be the number of jumps until time  .𝒩(t) t

Let  the invariant measure of πB (Kn, In)n∈ℕ
.

With
 if  et  if .αB =

5
3

B ≠ 0 αB =
3
2

B = 0

Let  then r > 0

lim
N→∞

NαBπB ({(k, i), λB(k, i)vB(k) > Nr}) =
|r |− 3

2 if B = 0.

|r |− 5
3 if B ≠ 0.{

Zu(t) = u +
1

2π ∫
t

0
vB (K(s)) ds = u +

𝒩(t)

∑
n=0

λB (Kn, In) vB (Kn) . SN =
N2

∑
n=0

Xn

 1
N

ZNu(NαBt) = u +
1
N

⌊NαBt⌋

∑
n=0

λB (Kn, In) vB (Kn) ℬN
u (t) = u +

1
N

⌊N2t⌋

∑
n=0

Xn .
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Let  the Lévy process with Lévy measure .YB
u ( ⋅ ) dσ(r) = |r |−αB−1 dr

Let   be the solution on  ofρB [0,T] × ℝ

∂tρB(t, u) = − (−Δ)
αB
2 [ρB](t, u),

ρB(0,u) = ρ0(u) .
Macroscopic scale

     lim
N→∞

2

∑
i=1

∫𝕋
f (NαBt, Nu, k, i) − ρB(t, u)

2
dk = 0.

JKO [AAP’09] and SSS [CMP’19] proved that

 if  et  if .αB =
5
3

B ≠ 0 αB =
3
2

B = 0
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lim
ε→0

ε ∑
x∈ℤ

J(εx)𝔼με[e(0,x)] = ∫ℝ
J(u)𝒲0(u)du .

The question was : Can we have an equation for the density of energy ?

What happens if we replace  by  ?B BN = BN−δCane [preprint] :

 if  and  if αB =
5
3

B ≠ 0 αB =
3
2

B = 0.

Answer : 

With

∂t𝒲(t, u) = − (−Δ)
αB
2 [𝒲](t, u) . Macroscopic  Scale

Initial assumption was 

Limit in one step proved by JKO [CMP’15] for .B = 0
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Let  with  . Now we work with the array BN = BN−δ δ > 0 (KN
n , IN

n ) .

Let   the Lévy process with measure Yδ
u( ⋅ ) νδ .

We define a measure  on  by  νδ ℝ*

{dνδ(r) =

 if  |r |− 3
2 −1 dr δ >

1
2

 if |r |− 5
3 −1 dr δ <

1
2

 if  hB(r)dr δ =
1
2

Theorem [Cane preprint] :  converges to N−1ZN
Nu(N

αδ⋅) Yδ
u( ⋅ ) .

   if       and        if .αδ =
5 − δ

3
δ <

1
2

αδ =
3
2

δ ≥
1
2

Let  then :r > 0

lim
N→∞

NαδπBN ({(k, i), λBN
(k, i)vBN(k) > Nr}) = νδ (r, + ∞) .

With
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 if  −(−Δ)
3
4[ϕ](u) δ >

1
2

           if  𝒟B[ϕ] δ =
1
2{  if  −(−Δ)

5
6[ϕ](u) δ <

1
2

𝒟δ[ϕ](u) =

Let   be the solution on  ofρδ [0,T] × ℝ

∂tρδ(t, u) = 𝒟δ[ρδ](t, u),

ρδ(0,u) = ρ0(u) .

Theorem [Cane, preprint] :

lim
N→∞

2

∑
i=1

∫𝕋
fN (Nαδt, Nu, k, i) − ρδ(t, u)

2
dk = 0.
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αδ

δ1
2

5
3

3
2

0

𝒟B

5 − δ
3 3

2

−(−Δ)
5
6 −(−Δ)

3
4

lim
B→0

lim
B→∞
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Work in progress ( with Guelmame ) : Study the transition in one step.

αδ

δ1
2

5
3

3
2

0

𝒟B

5 − δ
3 3

2

−(−Δ)
5
6 −(−Δ)

3
4

lim
B→0

lim
B→∞
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