GAĒTAN CANE LJAD, UCA

System

Wigner's functionnal

PDMP

STUDY OF A LATTICE DYNAMIC SUBMITTED TO A LOCAL NOISE PRESERVING THE ENERGY

GAËTAN CANE LJAD, UCA

PSPDE-IX

GAĒTAN CANE LJAD, UCA

Let $(\eta(x))_{x\in\mathbb{Z}}$ be a configuration defined as follows:

System

functionnal

$$orall x \in \mathbb{Z}, \quad orall t \in [0,T], \quad \eta_t(x) = \eta_0(x) + \int_0^t (\eta_s(x+1) - \eta_s(x-1)) ds.$$

PDMP

GAĒTAN CANE LJAD, UCA

Let $(\eta(x))_{x\in\mathbb{Z}}$ be a configuration defined as follows:

Wigner's functionnal

System

$$\forall x \in \mathbb{Z}, \quad \forall t \in [0, T], \quad \eta_t(x) = \eta_0(x) + \int_0^t (\eta_s(x+1) - \eta_s(x-1)) ds.$$

PDMP

We denote the energy by:

$$\mathsf{E}_t = \sum_{x \in \mathbb{Z}} |\eta_t(x)|^2$$

GAĒTAN CANE LJAD, UCA

Let $(\eta(x))_{x\in\mathbb{Z}}$ be a configuration defined as follows:

Wigner's functionnal

System

$$\forall x \in \mathbb{Z}, \quad \forall t \in [0, T], \quad \eta_t(x) = \eta_0(x) + \int_0^t (\eta_s(x+1) - \eta_s(x-1)) ds.$$

at

PDMP

We denote the energy by:

$$\mathsf{E}_t = \sum_{x \in \mathbb{Z}} |\eta_t(x)|^2.$$

We noise the dynamic in the following way :

GAĒTAN CANE LJAD, UCA

We assume that $(\eta_0(x))_{x\in\mathbb{Z}}$ is ditributed according to a measure μ_{ε} such that:

System

Wigner's functionnal

Definition

New noise

Kinetic limit

PDMP

$$\sup_{\epsilon \geq 0} \frac{\epsilon}{2} \mathbb{E}_{\mu_{\epsilon}}\left[\sum_{x \in \mathbb{Z}} |\eta_0(x)|^2\right] := \mathcal{K}_0 < \infty.$$

GAĒTAN CANE LJAD, UCA

We assume that $(\eta_0(x))_{x\in\mathbb{Z}}$ is ditributed according to a measure μ_{ε} such that:

System

Wigner's functionnal

Definition

New noise !

PDMP

 $\sup_{\epsilon\geq 0} \frac{\varepsilon}{2} \mathbb{E}_{\mu_{\varepsilon}}\left[\sum_{x\in\mathbb{Z}} |\eta_0(x)|^2\right] := \mathcal{K}_0 < \infty.$

Let *J* be a smooth function and $t \in [0, T]$. We define the Wigner's ditribution, denoted by, $\mathcal{W}_{\mu_{\epsilon}}(t)$ in the following way:

GAĒTAN CANE LJAD, UCA

We assume that $(\eta_0(x))_{x\in\mathbb{Z}}$ is ditributed according to a measure μ_{ε} such that:

System

Wigner's functionnal

Definition

New noise !

PDMP

$$\sup_{\epsilon\geq 0}\frac{\epsilon}{2}\mathbb{E}_{\mu_{\epsilon}}\left[\sum_{x\in\mathbb{Z}}|\eta_{0}(x)|^{2}\right]:=\mathcal{K}_{0}<\infty.$$

Let *J* be a smooth function and $t \in [0, T]$. We define the Wigner's ditribution, denoted by, $\mathcal{W}_{\mu_{\epsilon}}(t)$ in the following way:

$$\left\langle \mathcal{W}_{\mu_{\varepsilon}}(t), J \right\rangle = \frac{\varepsilon}{2} \sum_{(x,y) \in \mathbb{Z}^2} \mathbb{E}_{\mu_{\varepsilon}} \left[\eta_{\frac{t}{\varepsilon}}(x) \overline{\eta_{\frac{t}{\varepsilon}}(y)} \right] \int_{\mathbb{T}} dk e^{-2i\pi k [x-y]} \overline{J}\left(\frac{\varepsilon(x+y)}{2}, k \right).$$

GAĒTAN CANE LJAD, UCA

We assume that $(\eta_0(x))_{x\in\mathbb{Z}}$ is ditributed according to a measure μ_{ε} such that:

System

Wigner's functionnal

Definition

New noise !

PDMP

 $\sup_{\epsilon\geq 0}\frac{\epsilon}{2}\mathbb{E}_{\mu_{\epsilon}}\left[\sum_{x\in\mathbb{Z}}|\eta_{0}(x)|^{2}\right]:=\mathcal{K}_{0}<\infty.$

Let *J* be a smooth function and $t \in [0, T]$. We define the Wigner's ditribution, denoted by, $\mathcal{W}_{\mu_{\epsilon}}(t)$ in the following way:

$$\left\langle \mathcal{W}_{\mu_{\varepsilon}}(t),J
ight
angle = rac{\varepsilon}{2}\sum_{(x,y)\in\mathbb{Z}^2}\mathbb{E}_{\mu_{\varepsilon}}\left[\eta_{rac{t}{\varepsilon}}(x)\overline{\eta_{rac{t}{\varepsilon}}(y)}
ight]\int_{\mathbb{T}}dke^{-2i\pi k[x-y]}\overline{J}\left(rac{\varepsilon(x+y)}{2},k
ight).$$

LOCAL NOISE IS A PROBLEM !

The dynamic is generated by the generator \mathcal{L} where for $\phi \in \mathcal{D}(\mathcal{L})$ we have:

$$\mathcal{L}[\boldsymbol{\phi}] = \mathcal{A}[\boldsymbol{\phi}] + \varepsilon \mathcal{S}^{\mathsf{flip}}[\boldsymbol{\phi}] \quad \varepsilon > 0,$$

with:

$$\mathcal{S}^{\mathsf{flip}}[\phi(\eta)] = \sum_{x \in \mathbb{Z}} \gamma(\varepsilon x) \left[\phi(\eta^x) - \phi(\eta)\right].$$

Kinetic limit of $\mathscr{W}_{\!\mu_{\epsilon}}(\cdot)$

GAĒTAN CANE LJAD, UCA

L

System

Wigner's functionnal Definition New noise ! Kinetic limit

et
$$T>0$$
 and $\mu\in\mathcal{C}\left([0,T],\mathcal{M}_{b}^{+}
ight)$ such that:

$$\forall t \in [0, T], \langle \mu(t), J \rangle - \langle \mu(0), J \rangle = \int_0^t \frac{1}{2\pi} \langle \mu(s), \partial_k \omega \partial_u J \rangle \, ds + \int_0^t \langle \mu(s), C_{\gamma} J \rangle \, ds,$$

where
$$\mu(0)=\mu_0$$
 and

$$CJ(u,k) = 4\gamma(u) \left[\int_{\mathbb{T}} \left(\overline{J}(u,k') - \overline{J}(u,k) \right) dk' \right], \quad \omega(k) = \sin(2\pi k)$$

Kinetic limit of $\mathscr{W}_{\mu_{arepsilon}}(\cdot)$

GAĒTAN CANE LJAD, UCA

System

Wigner's functionnal Definition New noise ! Kinetic limit

et
$$T>0$$
 and $\mu\in\mathcal{C}\left([0,T],\mathcal{M}_{b}^{+}
ight)$ such that:

$$\forall t \in [0, T], \langle \mu(t), J \rangle - \langle \mu(0), J \rangle = \int_0^t \frac{1}{2\pi} \langle \mu(s), \partial_k \omega \partial_u J \rangle \, ds + \int_0^t \langle \mu(s), C_{\gamma} J \rangle \, ds,$$

where
$$\mu(0)=\mu_0$$
 and

$$CJ(u,k) = 4\gamma(u) \left[\int_{\mathbb{T}} \left(\overline{J}(u,k') - \overline{J}(u,k) \right) dk' \right], \quad \omega(k) = \sin(2\pi k).$$

Theorem

Under some assumptions, $(\mathcal{W}_{\mu_{\epsilon}}(\cdot))_{\epsilon>0}$ converges pointwise in $\mathcal{C}([0,T],\mathcal{M}_{b}^{+})$ to $(\mu_{t})_{t\in[0,T]}$.

Introduction of a PDMP

GAĒTAN CANE LJAD, UCA

$$\forall u \in \mathbb{R}, \quad \gamma_{\delta}(u) = rac{\gamma(rac{u}{\delta})}{\delta} \delta^{1-eta} \quad ext{with} \quad eta \geq 0.$$

System

Wigner's functionnal

PDMP

Introduction

 $\beta \leq 1$

Introduction of a PDMP

GAĒTAN CANE LJAD, UCA

$$\forall u \in \mathbb{R}, \quad \gamma_{\delta}(u) = rac{\gamma(rac{u}{\delta})}{\delta} \delta^{1-\beta} \quad ext{with} \quad \beta \geq 0.$$

 $\partial_t t^{\delta}(u,k,t) = -\frac{1}{2\pi} \cos(2\pi k) \partial_u t^{\delta}(u,k,t) + 4\gamma_{\delta}(u) \int_{\mathbb{T}} \left(t^{\delta}(u,k',t) - t^{\delta}(u,k,t) \right) dk',$

System

Wigner's functionnal

PDMP

Introduction

with $f^{\delta}(u,k,0) = f_0(u,k)$ and $(u,k) \in \mathbb{R} \times \mathbb{T}$.

If we assume that $\mu^{\delta}(\cdot)$ has a density $f^{\delta}(\cdot)$ then:

Introduction of a PDMP

GAĒTAN CANE LJAD, UCA

$$\forall u \in \mathbb{R}, \quad \gamma_{\delta}(u) = rac{\gamma(rac{u}{\delta})}{\delta} \delta^{1-\beta} \quad ext{with} \quad \beta \geq 0.$$

System

Wigner's functionnal H

 $\begin{array}{l} \mathsf{PDMP} \\ \mathsf{Introduction} \\ \beta \leq 1 \end{array}$

Twe assume that
$$\mu^{\delta}(\cdot)$$
 has a density $f^{\delta}(\cdot)$ then:
 $\partial_t f^{\delta}(u,k,t) = -\frac{1}{2\pi} \cos(2\pi k) \partial_u f^{\delta}(u,k,t) + 4\gamma_{\delta}(u) \int_{\mathbb{T}} \left(f^{\delta}(u,k',t) - f^{\delta}(u,k,t) \right) dk',$
with $f^{\delta}(u,k,0) = f_0(u,k)$ and $(u,k) \in \mathbb{R} \times \mathbb{T}.$

We conclude that:

$$\forall t \in [0,T], \quad \forall (u,k) \in \mathbb{R} \times \mathbb{T}, \quad t^{\delta}(u,k,t) = \mathbb{E}_{(u,k)}\left[f_0(U_t^{\delta},K_t^{\delta})\right],$$

where $(U_t^{\delta}, \mathcal{K}_t^{\delta})_{t \geq 0}$ is a PDMP.

Study of the case $\beta \leq 1$

GAĒTAN CANE LJAD, UCA

System

Wigner's functionnal

Introduction

 $\beta \leq 1$

•
$$\beta < 1$$
: $\lim_{\delta \to 0} f^{\delta}(u,k,t) = f_0(u-v(k)t).$

Study of the case $\beta \leq 1$

System

Wigner's functionnal

PDMP Introduction $\beta \le 1$

•
$$\beta < 1$$
: $\lim_{\delta \to 0} t^{\delta}(u, k, t) = f_0(u - v(k)t)$.
• $\beta = 1$: