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Fourier’s law and physical motivations
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Fourier’s law

1822 : Fourier’s experimental law:
TL TR

J

J(x) =−K ∇T (x),

where K is the heat conductivity of the system.
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Harmonic chain in one dimension

We study a system of N particles.

1 2 3 N−2 N−1 N

We denote the position of the particle i by xi , its speed by ẋi and its
acceleration by ẍi , then we have for each i ∈ {1, · · · ,N}:

mi ẍi = (xi+1 + xi−1−2xi),

with x0 = xN+1 = 0.
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Part II

Historical results on the harmonic chain
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Introduction of heat bath in harmonic chain

We attache each end of the chain to a heat bath at different
temperature.

TL

1 2 3 N−2 N−1 N

TR

Hence, (xi)i is now a stochastic process solution of the following SDE:

mi ẍi = (xi+1 +xi−1−2xi)+(δi,1TL +δi,NTR)
√

2midWi−(δi,1 +δi,N)ẋi ,

with x0 = xN+1 = 0.
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Stationnary state

In order to observe the heat current we need to wait until the system
reaches the stationnary state. Fourier’s law is then written as:

〈J〉=−kΣ∇J,

where 〈·〉 denotes the expectation under the invariant measure of the
system.

Rieder, Lebowitz and Lieb proved in 1967 that:

〈J〉 ∼ TL−TR 6=
TL−TR

N
.

Conclusion: Fourier’s law is not valid and k ∼ N.

What happens if we put some disorder on the chain ?
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Introduction of random masses

Casher and Lebowitz introduced in 1971 random masses in the
previous system.

Let (mi)i≤N i.i.d positive random variables.

Hence, for each i ∈ {1, · · · ,N}:

mi ẍi = (xi+1 +xi−1−2xi)+(δi,1TL +δi,NTR)
√

2midWi−(δi,1 +δi,N)ẋi ,

with x0 = xN+1 = 0.

They obtained that:

〈J〉 ∼ TL−TR

N3/2
.

Conclusion: Fourier’s law is still not valid but k ∼ N−1/2.

In 1971,Rubin and Greer worked on the same system as Casher and
Lebowitz but with free boundary conditions and get:

〈J〉 ∼ TL−TR

N1/2
.
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Introduction of a random magnetic field
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Presentation of the system

Work in collaboration with Junaid Majeed Bhat , Abhishek Dhar and
Cédric Bernardin.

We study a two dimensional harmonic chain submitted to a random
magnetic field.

TL

1

B1

2

B2

3

B3

N−2

BN−2

N−1

BN−1

N

BN

TR

Let (Bi)i i.i.d random variables.

A particle labelled i is now a two dimensional vector (xi ,yi). Let
i ∈ {1, · · · ,N} then:

ẍi = (xi+1 + xi−1−2xi ) + (δi,1TL + δi,NTR)
√

2W x
i − (δi,1 + δi,N)ẋi

+ Bi ẏi ,

ÿi = (yi+1 + yi−1−2yi ) + (δi,1TL + δi,NTR)
√

2W y
i − (δi,1 + δi,N)ẏi

−Bi ẋi .
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−Bi ẋi .

10/23



Gaëtan
Cane
LJAD,
UCA

System

Heat
current

Net trans-
mission

Green
function

Formal
reasoning

Change
of time

Theorem
on λ

Lyapunov
exponent

Back to
Heat
current

Presentation of the system

Work in collaboration with Junaid Majeed Bhat , Abhishek Dhar and
Cédric Bernardin.

We study a two dimensional harmonic chain submitted to a random
magnetic field.

TL

1

B1

2

B2

3

B3

N−2

BN−2

N−1

BN−1

N

BN

TR

Let (Bi)i i.i.d random variables.

A particle labelled i is now a two dimensional vector (xi ,yi). Let
i ∈ {1, · · · ,N} then:
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−Bi ẋi .
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Matrix form of the system for N = 3

We assume here that N = 3 then we have:


ẍ1
ẍ2
ẍ3
ÿ1
ÿ2
ÿ3

+


2 −1 0 −B1 0 0
−1 2 −1 0 −B2 0
0 −1 2 0 0 −B3

B1 0 0 2 −1 0
0 B2 0 −1 2 −1
0 0 B3 0 −1 2




x1
x2
x3
y1
y2
y3

+


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1




ẋ1
ẋ2
ẋ3
ẏ1
ẏ2
ẏ3

=


W x

1
W x

2
W x

3
W y

1
W y

2
W y

3

 .

By using Fourier transform in time we get for all ω ∈ R:


2 + 1−ω2 −1 0 −B1 0 0
−1 2−ω2 −1 0 −B2 0
0 −1 2 + 1−ω2 0 0 −B3

B1 0 2 + 1−ω2 −1 0
0 B2 0 −1 2−ω2 −1
0 0 B3 0 −1 2 + 1−ω2




x̃1
x̃2
x̃3
ỹ1
ỹ2
ỹ3

=



W̃ x
1

W̃ x
2

W̃ x
3

W̃ y
1

W̃ y
2

W̃ y
3


.
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ẍ1
ẍ2
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ẏ2
ẏ3
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ỹ3

=



W̃ x
1

W̃ x
2

W̃ x
3

W̃ y
1

W̃ y
2

W̃ y
3


.

11/23



Gaëtan
Cane
LJAD,
UCA

System

Heat
current

Net trans-
mission

Green
function

Formal
reasoning

Change
of time

Theorem
on λ

Lyapunov
exponent

Back to
Heat
current

Matrix form of the system for N = 3

We assume here that N = 3 then we have:


ẍ1
ẍ2
ẍ3
ÿ1
ÿ2
ÿ3

+


2 −1 0 −B1 0 0
−1 2 −1 0 −B2 0
0 −1 2 0 0 −B3

B1 0 0 2 −1 0
0 B2 0 −1 2 −1
0 0 B3 0 −1 2




x1
x2
x3
y1
y2
y3

+


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1




ẋ1
ẋ2
ẋ3
ẏ1
ẏ2
ẏ3

=


W x

1
W x

2
W x

3
W y

1
W y

2
W y

3

 .

By using Fourier transform in time we get for all ω ∈ R:


2 + 1−ω2 −1 0 −B1 0 0
−1 2−ω2 −1 0 −B2 0
0 −1 2 + 1−ω2 0 0 −B3

B1 0 2 + 1−ω2 −1 0
0 B2 0 −1 2−ω2 −1
0 0 B3 0 −1 2 + 1−ω2




x̃1
x̃2
x̃3
ỹ1
ỹ2
ỹ3

=



W̃ x
1

W̃ x
2

W̃ x
3

W̃ y
1

W̃ y
2

W̃ y
3


.
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Expressions of solutions

In general case we can write:(
Π(ω) B(ω)
−B(ω) Π(ω)

)(
X(ω)
Y (ω)

)
=

(
W x (ω)
W y (ω)

)
.

We have then for every i ∈ {1, · · · ,N} :

x̃i(ω) = ∑
j

[G1(ω)]ijW̃ x
j (ω) +∑

j
[G2(ω)]ijW̃ y

j (ω),

ỹi(ω) =−∑
j

[G2ω)]ijW̃ x
j (ω) +∑

j
[G1(ω)]ijW̃ y

j (ω),

where:

G1(ω) =
1

Π(ω) + B(ω)[Π(ω)]−1B(ω)
and G2(ω) =−G1(ω)B(ω)[Π(ω)]−1.
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Heat current and Net transmission

TL

1

B1

2

B2

3

B3

N−2

BN−2

N−1

BN−1

N

BN

TR

If
−→
FL is the force on the 1st oscillator due to the left reservoir then:

−→
J =
−→
FL · (x1,y1)T .

Hence, in the steady state we get:

〈J〉=−〈x2
1 + y2

1 〉+ 〈W x ẋ1〉+ 〈W y ẏ1〉.

After computations we get:

〈J〉= (TL−TR)
∫ +∞

−∞

ω
2T (ω)dω,

with:

T (ω) =
4
π

[
|G1(ω)1,N |2 + |G2(ω)1,N |2

]
.
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Plot of the Net transmission

Net transmission for a constant magnetic

field.

Net transmission for a random magnetic
field.

Randomness causes supression of
the net transmission.

T is a decreasing function in N.

T is higher near ω = 0.

Normal modes of energy ω are
localized with localization length λ.
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Green function as product of random matrices

We recall that:

〈J〉= (TL−TR)
4
π

∫
∞

0

[
|G1(ω)1,N |2 + |G2(ω)1,N |2

]
.

Let ω ∈ R. We define the following matrice:

G1,N(ω) =

(
G1(ω)1,N G2(ω)1,N

−G2(ω)1,N G1(ω)1,N

)
.

After a change of variable we can write that:

G−1
1,N(ω) = ΩL

N

∏
i=1

(
(2−ω2)I2− iωBiJ I2

−I2 0

)
ΩR

= ΩL

N

∏
i=1

Ωi(ω)ΩR
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Formal expression for the size of the current

Furstenberg’s theorem gives us :

lim
N→∞

1
N

log

(∥∥∥∥∥ N

∏
i=1

Ωi(ω)

∥∥∥∥∥
)

= λ(ω),

where λ is the Lyapunov exponent.

Hence, for N large enough, a formal reasoning leads to:∥∥∥∥∥ N

∏
i=1

Ωi(ω)

∥∥∥∥∥∼ exp(Nλ(ω).

〈J〉 =
8(TL−TR)

π

∫ +∞

0
ω

2
[
|G1(ω)1,N |2 + |G2(ω)1,N |2

]
dω

∼ (TL−TR)
∫

∞

0
bc(ω)ω

2 exp(−Nλ(ω))dω.

Boundary conditions and Lyapunov exponent give us the size of
the current.
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Reduction to a product of 2×2 random matrices

We define:

σ
z =

(
1 0
0 −1

)
and U =

1√
2

(
i 1
−i 1

)
.

Then we can prove that:

N

∏
i=1

Ωi(ω) =

(
U† 0
0 U†

) N

∏
i=1

(
(2−ω2)I2 + ωBiσ

z I2
−I2 0

)(
U 0
0 U

)
,

where

N

∏
i=1

(
(2−ω2)I2 + ωBiσ

z I2
−I2 0

)
=


f +
N 0 g+

N 0
0 f−N 0 g−N

−f +
N+1 0 −g+

N+1 0
0 −f−N−1 0 −g−N−1

 ,

with:
∀i ∈ {1, · · · ,N}, f−i+1 = (2−ω

2−ωBi)f−i − f−i−1.
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From a Markov chain to a Markov process

From the definition of (f−i )i we have:(
f−N

f−N−1

)
=

N

∏
i=1

(
2−ω2−Biω −1

1 0

)(
1
0

)
.

Let i ∈ {1, · · · ,N}.

f−i+1−2f−i + f−i−1 =−(ω
2 + ωBi)f−i .

Continuum limit leads to:

f̈ (t) =−(ω
2 + ωB(t))f (t).

We define ηt = B(t)−〈B〉. Hence, we get:

d
dt

(
f (t)
ḟ (t)

)
=

(
0 1

ω〈B〉 0

)(
f (t)
ḟ (t)

)
+ ωηt

(
0 0
−1 0

)(
f (t)
ḟ (t)

)
.

This is an equation of the form:

ż(t) = A0z(t) + ωηtA1z(t).
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We define ηt = B(t)−〈B〉. Hence, we get:

d
dt

(
f (t)
ḟ (t)

)
=

(
0 1

ω〈B〉 0

)(
f (t)
ḟ (t)

)
+ ωηt

(
0 0
−1 0

)(
f (t)
ḟ (t)

)
.

This is an equation of the form:

ż(t) = A0z(t) + ωηtA1z(t).
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ḟ (t)

)
.

This is an equation of the form:

ż(t) = A0z(t) + ωηtA1z(t).
18/23



Gaëtan
Cane
LJAD,
UCA

System

Heat
current

Net trans-
mission

Green
function

Formal
reasoning

Change
of time

Theorem
on λ

Lyapunov
exponent

Back to
Heat
current

Lyapunov exponent for particular class of SDE

Theorem (Wihstutz in 1999)

Let c ∈ R. For a stochastic differential equation of the form,

ż(t) = A0z(t) + εηtA1z(t),

with:

A0 =

(
0 1
−c 0

)
A1 =

(
0 0
1 0

)
.

Then we have:

If c > 0 then λ(ε) = ε2

8c + O(ε6).

If c < 0 then λ(ε) =
√
−c + O(ε2).

If c = 0 then λ(ε) = α0ε2/3 + O(ε).

where λ is the Lyapunov exponent associated to the process (zt)t .
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Lyapunov exponent of the Markov process

In our case we have ω instead of ε and c = ω〈B〉.

For 〈B〉= 0 we get that λ(ω) = α0ω2/3.

When 〈B〉 6= 0 the following change of time is used:

t̃ =
√

ωt.

Using again the previous Theorem and the fact that λ = λ̃
√

ω we get:

For 〈B〉> 0, λ(ω) = ω

8〈B〉 + O(ω5/4).

For 〈B〉< 0, λ(ω) =
√
−〈B〉ω1/2 + O(ω5/2).
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Back to the heat current

We recall that:

〈J〉 ∼ (TL−TR)
∫

∞

0
bc(ω)ω

2 exp(−Nλ(ω))dω.

In our model we have bc(ω)∼ 1. Hence, we get:

If 〈B〉 6= 0 then 〈J〉 ∼ N−5/2.

If 〈B〉= 0 then 〈J〉 ∼ N−9/2.
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